

Cornell University Operations Research and Information Engineering

Operations Research in EMS in the Past, Present and Future

Shane G. Henderson http://people.orie.cornell.edu/~shane

Joint work with many folks! **Thanks:** NSF CMMI 0758441, CMMI 0926814, CMMI 1200315, Optima Corporation, Toronto EMS, Dave Lyons, Ambulance Victoria, Armann Ingolfsson, Andrew Mason

Who Am I?

St John

Co-developed BARTSim 1997-99 Acquired by Optima Corporation, now known as Optima Live/Predict/...

Working loosely with Optima.

Ambulance Victoria, Toronto EMS have kindly shared data

Scheduling daily patient transfers around Ontario, positioning fixed-wing aircraft and helicopters for urgent and emergent calls

Shane G. Henderson

Some Day-to-Day Questions

- How many ambulances do we need?
 - At what times?
 - Where?
- What happens to performance if
 - We close Base 3?
 - Central hospital closes its spinal unit?
 - A "big event" knocks out some of the fleet?
- What crew schedules and rosters should we use?

Some Higher-Level Questions

- What benefits might we get from system-status management?
- Should we use a tiered fleet?
- How should national resources be divided between regions?

Statistics and Operations Research in EMS

My Plan For Today

- Optimization and simulation
- Case: Ithaca Fire Department
- Case: Ornge
- Policy questions
 - Economies of scale
 - System Status Management
- Future Research

Optimization and Simulation

Shane G. Henderson

Some Questions

- We' re considering a new base. Where is the ideal location?
- Are our bases in the right places?
- What locations are best for System Status Management?
- Given where all my units are now, where should I send a newly free unit?

One Way to Do It

- Download calls and locations to GIS
- Stare at the map for a while
- Pick location(s)
- Argue, argue, argue
- Are you sure?

A Better Way

- Use optimization
- Search over all possible locations, and find the best (usually under simplifying assumptions that make the math work out)
- Not sure about those assumptions?
- Test with a detailed simulation
- For example, which potential base locations give the smallest average travel time to calls?

Optimization

- A method for searching over huge numbers of options to identify the best
- Have to make simplifying assumptions that ensure that the math works
- Very mature field
 - Used in airlines, bike sharing, refineries, network design, composite material design...
 - Constant use in EMS since the 70s

Simulation

- Computer model of operations
- As detailed as you like (modulo \$\$)
- Test planned changes before implementation
- Great for
 - Testing ideas without risk
 - Explaining ideas to stakeholders
- Can't do "search" like with optimization

Simulation

- Very mature field
 - Used in hospital layout, container freight planning, trucking, traffic control, food safety, …
- Constant use in EMS since the 70s
- Optimization and simulation can "calm" the conversation
 - Evidence-based decision making

Case Study

Ithaca Fire Dept (IFD): 4 engines, 1 ladder truck

What if IFD had one more/one less engine?

Or if one base were moved?

Master of Engineering Student Team, 2003

Shane G. Henderson

Based on 2001 data	% of first unit responses in 4 mins	% of full service responses in 8 mins	
4 engines	XX	XX	
5 engines	XX	XX	
4 engines, move West Hill station	XX	XX	 2 min 3 min 4 min

First Unit Average Travel Time > 4 min

Case Study

Ornge, Ontario Air Ambulance

Scene calls/urgent/emergent and planned transports (day ahead)

Master of Engineering Student Teams, 2008-14

Shane G. Henderson

Spatial Distribution of Call Arrivals

Urgent/Emergent Locations

Shane G. Henderson

Day-Ahead Transports

- Plan tonight for tomorrow's schedule
- Use "schedule repair" to fix the schedule after disruption
- Optimization tools in daily use at Ornge
- In a study without schedule repair
 - Original 12% savings prediction over experienced flight planners
 - -7% savings (\$ / km) realized

Economies of Scale

At quiet times, you have to run at lower utilization than busy times to achieve the same on-time performance

Rural areas must run at lower utilization than urban areas to achieve the same response-time performance

Calls in One Day: Small Town

Shane G. Henderson

Calls in One Day: Medium

Calls in One Day: Large

Shane G. Henderson

Number of Calls in One Day

Average # Calls	Standard Deviation
4.6	2.1
16.4	4.9
970	80

As average gets big, standard deviation gets big too, but becomes a far smaller fraction of expected load

Impact on Deployment

- Need to plan for N calls + 2 standard deviations, where N = average
- Small *N*: 2 std deviations a big deal
- Big N: 2 std deviations fairly small
- Conclusion: Graveyard shift needs lower utilization for the same on-time %
- Conclusion: Small towns need lower utilization for the same on-time %

More Policy Questions

- ALS only or tiered fleet?
 - Either can work well under conditions
- What does optimal dispatch look like?
 - Quiet stations take low-priority calls in busy areas
- System status management?
 - Largest gains when performance is currently "modest"
 - -e.g., from 75% on time to 80% on time

Accessing These Tools

- Need to partner with specialists

 Company and/or university
- Special software tools

What should be next in research? (My shopping list)

Shane G. Henderson

System Status Management

- Plans need to be practical
 - Can't move crews too frequently
- Can we find better plans?
- Finding an "optimal" plan is probably out of reach. Can we find bounds?
 - Would tell us when need more resources
 - Or a different way of doing things...
 - Also tell us when there's no point in searching further for better plans

Improve Statistical Modeling

- These tools require
 - Arrival rates in time
 - Spatial distribution of calls
 - Travel times on road networks

Shane G. Henderson

True vs. Modeled Durations

L-S Data: Scatterplot of true trip durations vs. predictions

True trip durations (s)

Shane G. Henderson

What Might Be Next

- Currently using historical data
- What about real-time information?
 - Need to connect CAD to, e.g., Waze or Tom-Tom or … ?
 - Waze etc give non-L&S speeds
 - Need to do lots of queries to select posts
 - Still need historical predictions/data

Systems-Level Models

- What is the best way to deliver prehospital care?
 - GP system (Netherlands)
 - Doctor on ambulance (Germany)
 - Cardiac arrest volunteers?
 - Paramedics on motorbikes?
- How to share resources across different regions?
 - Borrow from call-center literature
 - But ambulances can't team up as easily

Other Ideas for Impact?

How Can You Learn More?

Shane G. Henderson